Abstract

AbstractWe introduce an invariant, called the contact number, associated with each Euclidean submanifold. We show that this invariant is, surprisingly, closely related to the notions of isotropic submanifolds and holomorphic curves. We are able to establish a simple criterion for a submanifold to have any given contact number. Moreover, we completely classify codimension-$2$ submanifolds with contact number ${\geq}3$. We also study surfaces in $\mathbb{E}^6$ with contact number ${\geq}4$. As an immediate consequence, we obtain the first explicit examples of non-spherical pseudo-umbilical surfaces in Euclidean spaces.AMS 2000 Mathematics subject classification: Primary 53C40; 53A10. Secondary 53B25; 53C42

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.