Abstract

The high-temperature deformation behaviors of Ti–5Al–5Mo–5V–1Cr–1Fe alloy were investigated through the isothermal compression experiment. The dislocation evolution in the working-hardening stage has been analyzed and the corresponding constitutive model has been constructed. The dynamic softening mechanism has been identified with the relationship between the saturated dislocation density and dynamic recrystallization (DRX) critical density. The dependence on deformation parameters has been discussed and a concept of critical strain rate ε̇C has been proposed. A dynamic softening map has been designed to predict the corresponding softening behaviors under certain deformation conditions. The constitutive model based on dislocation evolution has been extended to overall deformation incorporating dynamic softening behaviors and their deviations have been explained by introducing the processing map.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.