Abstract
In this paper, we present two composite Milstein methods for the strong solution of Stratonovich stochastic differential equations driven by d-dimensional Wiener processes. The composite Milstein methods are a combination of semi-implicit and implicit Milstein methods. The criterion for choosing either the implicit or the semi-implicit method at each step of the numerical solution is given. The stability and convergence properties of the proposed methods are analyzed for the linear test equation. It is shown that the proposed methods converge to the exact solution in Stratonovich sense. In addition, the stability properties of our methods are found to be superior to those of the Milstein and the composite Euler methods. The convergence properties for the nonlinear case are shown numerically to be the same as the linear case. Hence, the proposed methods are a good candidate for the solution of stiff SDEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.