Abstract

We investigate the computational complexity for determining various properties of a finite transformation semigroup given by generators. We introduce a simple framework to describe transformation semigroup properties that are decidable in [Formula: see text]. This framework is then used to show that the problems of deciding whether a transformation semigroup is a group, commutative or a semilattice are in [Formula: see text]. Deciding whether a semigroup has a left (respectively, right) zero is shown to be [Formula: see text]-complete, as are the problems of testing whether a transformation semigroup is nilpotent, [Formula: see text]-trivial or has central idempotents. We also give [Formula: see text] algorithms for testing whether a transformation semigroup is idempotent, orthodox, completely regular, Clifford or has commuting idempotents. Some of these algorithms are direct consequences of the more general result that arbitrary fixed semigroup equations can be tested in [Formula: see text]. Moreover, we show how to compute left and right identities of a transformation semigroup in polynomial time. Finally, we show that checking whether an element is regular is [Formula: see text]-complete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.