Abstract

A dichotomy theorem for a class of decision problems is a result asserting that certain problems in the class are solvable in polynomial time, while the rest are NP-complete. The first remarkable such dichotomy theorem was proved by T.J. Schaefer in 1978. It concerns the class of generalized satisfiability problems SAT(S), whose input is a CNF(S)-formula, i.e., a formula constructed from elements of a fixed set S of generalized connectives using conjunctions and substitutions by variables. Here, we investigate the complexity of minimal satisfiability problems MIN SAT(S), where S is a fixed set of generalized connectives. The input to such a problem is a CNF(S)-formula and a satisfying truth assignment; the question is to decide whether there is another satisfying truth assignment that is strictly smaller than the given truth assignment with respect to the coordinate-wise partial order on truth assignments. Minimal satisfiability problems were first studied by researchers in artificial intelligence while investigating the computational complexity of propositional circumscription. The question of whether dichotomy theorems can be proved for these problems was raised at that time, but was left open. In this paper, we settle this question affirmatively by establishing a dichotomy theorem for the class of all MIN SAT(S)-problems.KeywordsPolynomial TimeModel CheckConstraint SatisfactionDichotomy TheoremLogical RelationThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.