Abstract

Addition of amino acids, glycine, alanine, and serine, to poorly soluble copper(II) salts [copper(II) citrate and copper(II) succinate] all increase solubility of the copper(II) salts. Relative increases in solubility follow the polarity trend in the selected amino acids, with serine creating the greatest increase in solubility. Simultaneous equilibria calculations indicate the formation of mixed-ligand complexes in the copper(II) succinate–amino acid systems, the first time such mixed-ligand complexes have been observed. In contrast, mixed-ligand complexes are not predicted in the copper(II) citrate–amino acid systems. Potential bioavailability of copper(II) appears to be increased by the inclusion of amino acids in solution, roughly in parallel with the increase in solubility of the copper(II) salt. Therefore, measurement of the change in solubility caused by addition of amino acids to aqueous solution gives qualitative insight to the potential increase in bioavailability of the metal ion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.