Abstract
Alzheimer's disease (AD) is a complex multifactorial neurodegenerative disorder and the most common form of dementia. AD is highly heritable, with heritability estimates of ∼70% from twin studies. Progressively larger genome-wide association studies (GWAS) have continued to expand our knowledge of AD/dementia genetic architecture. Until recently these efforts had identified 39 disease susceptibility loci in European ancestry populations. Two new AD/dementia GWAS have dramatically expanded the sample sizes and the number of disease susceptibility loci. The first increased total sample size to 1,126,563-with an effective sample size of 332,376-by predominantly including new biobank and population-based dementia datasets. The second, expands on an earlier GWAS from the International Genomics of Alzheimer's Project (IGAP) by increasing the number of clinically-defined AD cases/controls in addition to incorporating biobank dementia datasets, resulting in a total sample size to 788,989 and an effective sample size of 382,472. Collectively both GWAS identified 90 independent variants across 75 AD/dementia susceptibility loci, including 42 novel loci. Pathway analyses indicate the susceptibility loci are enriched for genes involved in amyloid plaque and neurofibrillary tangle formation, cholesterol metabolism, endocytosis/phagocytosis, and the innate immune system. Gene prioritization efforts for the novel loci identified 62 candidate causal genes. Many of the candidate genes from known and newly discovered loci play key roles in macrophages and highlight phagocytic clearance of cholesterol-rich brain tissue debris by microglia (efferocytosis) as a core pathogenetic hub and putative therapeutic target for AD. WHERE NEXT?: While GWAS in European ancestry populations have substantially enhanced our understanding of AD genetic architecture, heritability estimates from population based GWAS cohorts are markedly smaller than those from twin studies. While this missing heritability is likely due to a combination of factors, it highlights that our understanding of AD genetic architecture and genetic risk mechanisms remains incomplete. These knowledge gaps result from several underexplored areas in AD research. First, rare variants remain understudied due to methodological issues in identifying them and the cost of generating sufficiently powered whole exome/genome sequencing datasets. Second, sample sizes of non-European ancestry populations in AD GWAS remain small. Third, GWAS of AD neuroimaging and cerebrospinal fluid endophenotypes remains limited due to low compliance and high costs associated with measuring amyloid-β and tau levels and other disease-relevant biomarkers. Studies generating sequencing data, including diverse populations, and incorporating blood-based AD biomarkers are set to substantially improve our knowledge of AD genetic architecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.