The complex developmental mechanisms of nucleus-forming jumbo phages.
The complex developmental mechanisms of nucleus-forming jumbo phages.
- Research Article
27
- 10.1074/mcp.r900005-mcp200
- May 1, 2010
- Molecular & Cellular Proteomics
Localized protein synthesis is increasingly recognized as a means for polarized cells to modulate protein levels in subcellular regions and the distal reaches of their cytoplasm. The axonal and dendritic processes of neurons represent functional domains of cytoplasm that can be separated from their cell body by vast distances. This separation provides a biological setting where the cell uses locally synthesized proteins to both autonomously respond to stimuli and to retrogradely signal the cell body of events occurring is this distal environment. Other cell types undoubtedly take advantage of this localized mechanism, but these have not proven as amenable for isolation of functional subcellular domains. Consequently, neurons have provided an appealing experimental platform for study of mRNA transport and localized protein synthesis. Molecular biology approaches have shown both the population of mRNAs that can localize into axons and dendrites and an unexpectedly complex regulation of their transport into these processes. Several lines of evidence point to similar complexities and specificity for regulation of mRNA translation at subcellular sites. Proteomics studies are beginning to provide a comprehensive view of the protein constituents of subcellular domains in neurons and other cell types. However, these have currently fallen short of dissecting temporal regulation of new protein synthesis in subcellular sites and mechanisms used to ferry mRNAs to these sites.
- Research Article
152
- 10.1038/s41564-019-0612-5
- Dec 9, 2019
- Nature Microbiology
CRISPR-Cas systems provide bacteria with adaptive immunity against bacteriophages1. However, DNA modification2,3, the production of anti-CRISPR proteins4,5 and potentially other strategies enable phages to evade CRISPR-Cas. Here, we discovered a Serratia jumbo phage that evades type I CRISPR-Cas systems, but is sensitive to type III immunity. Jumbo phage infection resulted in a nucleus-like structure enclosed by a proteinaceous phage shell-a phenomenon only reported recently for distantly related Pseudomonas phages6,7. All three native CRISPR-Cas complexes in Serratia-type I-E, I-F and III-A-were spatially excluded from the phage nucleus and phage DNA was not targeted. However, the type III-A system still arrested jumbo phage infection by targeting phage RNA in the cytoplasm in a process requiring Cas7, Cas10 and an accessory nuclease. Type III, but not type I, systems frequently targeted nucleus-forming jumbo phages that were identified in global viral sequence datasets. The ability to recognize jumbo phage RNA and elicit immunity probably contributes to the presence of both RNA- and DNA-targeting CRISPR-Cas systems in many bacteria1,8. Together, our results support the model that jumbo phage nucleus-like compartments serve as a barrier to DNA-targeting, but not RNA-targeting, defences, and that this phenomenon is widespread among jumbo phages.
- Research Article
8
- 10.1016/j.chom.2024.05.016
- Jun 12, 2024
- Cell Host & Microbe
Characterization of a lipid-based jumbo phage compartment as a hub for early phage infection
- Research Article
44
- 10.1016/j.molcel.2022.10.028
- Nov 16, 2022
- Molecular Cell
Type III CRISPR-Cas provides resistance against nucleus-forming jumbo phages via abortive infection
- Research Article
221
- 10.1523/jneurosci.12-03-00762.1992
- Mar 1, 1992
- The Journal of Neuroscience
The presence of polyribosomes within dendrites suggests a capability for local dendritic protein synthesis. However, local synthesis is difficult to evaluate because of rapid somatodendritic protein transport. The present study describes a two-surfaced culture system that allowed the separation of living axons and dendrites from their cell bodies of origin. Because this system eliminates the transport of proteins produced in the cell body, it was possible to study the extent of dendritic protein synthesis directly. Hippocampal neurons were plated on a Nucleopore polycarbonate membrane that was mounted on a thick matrix of proteins (Matrigel) fixed on a coverslip. As the neurons grew, axons and dendrites grew through the membrane into the Matrigel. To evaluate local protein synthesis within dendrites, the membrane with the cell bodies was removed, leaving a dense array of transected dendrites and axons on the coverslip with few contaminant cell bodies. Absence of cell bodies was confirmed by staining with the nuclear stain Hoechst 33258. Coverslips with isolated neurites were pulse labeled with 3H-leucine for 30 min, and fixed for autoradiography to identify sites of protein synthesis. Autoradiographic analyses revealed that isolated dendrites (immunochemically identified using antibodies against MAP2) became heavily labeled, whereas axons exhibited little if any labeling. The labeling was essentially eliminated when the neurites were pulse labeled with 3H-leucine in the presence of puromycin, whereas labeling was affected only minimally by chloramphenicol. The puromycin-sensitive incorporation of 3H-leucine in dendrites demonstrates that the polyribosomes previously described are active in protein synthesis. This system will allow a characterization of synthetic activity within isolated neurites and provide a new approach to identifying proteins that are produced within dendrites.
- Supplementary Content
21
- 10.1128/jb.00362-20
- Dec 18, 2020
- Journal of Bacteriology
Since their discovery more than 100 years ago, the viruses that infect bacteria (bacteriophages) have been widely studied as model systems. Largely overlooked, however, have been "jumbo phages," with genome sizes ranging from 200 to 500 kbp. Jumbo phages generally have large virions with complex structures and a broad host spectrum. While the majority of jumbo phage genes are poorly functionally characterized, recent work has discovered many unique biological features, including a conserved tubulin homolog that coordinates a proteinaceous nucleus-like compartment that houses and segregates phage DNA. The tubulin spindle displays dynamic instability and centers the phage nucleus within the bacterial host during phage infection for optimal reproduction. The shell provides robust physical protection for the enclosed phage genomes against attack from DNA-targeting bacterial immune systems, thereby endowing jumbo phages with broad resistance. In this review, we focus on the current knowledge of the cytoskeletal elements and the specialized nuclear compartment derived from jumbo phages, and we highlight their importance in facilitating spatial and temporal organization over the viral life cycle. Additionally, we discuss the evolutionary relationships between jumbo phages and eukaryotic viruses, as well as the therapeutic potential and drawbacks of jumbo phages as antimicrobial agents in phage therapy.
- Research Article
66
- 10.1523/jneurosci.1476-04.2004
- Jul 7, 2004
- The Journal of Neuroscience
An impressive body of evidence has been accumulated indicating that local protein synthesis is implicated in navigation of neurite extension induced by guidance cues, such as semaphorin3A (Sema3A). We found previously that a Src type tyrosine kinase Fyn and cyclin-dependent kinase 5 (Cdk5) mediate Sema3A-signaling. We also showed that Sema3A elicits axonal transport through neuropilin-1, a receptor for Sema3A, located at the growth cones. Here, we investigate the relationship between Sema3A-induced local signaling, protein synthesis, and axonal transport. Lavendustin A, a tyrosine kinase inhibitor, and olomoucine, a cyclin-dependent kinase inhibitor, suppressed Sema3A-induced facilitation of anterograde and retrograde axonal transport in dorsal root ganglion (DRG) neuron with and without the cell body. Sema3A-induced facilitation of axonal transport was attenuated in DRG neurons of fyn- (fyn-/-) and a Cdk5 activator, p35 (p35-/-)-deficient mice when compared with those of wild-type or heterozygous mice. Inhibition of protein synthesis suppressed Sema3A-induced facilitation of axonal transport in the DRG neuron with and without the cell body. Sema3A enhanced the level of immunoreactivity of phosphorylated eukaryotic translation initiation factor 4E (eIF-4E) within 5 min in growth cones in a time course similar to that of the facilitated axonal transport. This enhanced signal for phospho-eIF4E was blocked by lavendustin A or olomoucine and was not detected in the fyn-/- and p35-/- neurons. These results provide evidence for a mutual regulatory mechanism between local protein synthesis and axonal transport.
- Research Article
448
- 10.1128/jvi.36.1.189-203.1980
- Oct 1, 1980
- Journal of Virology
Herpes simplex virus (HSV)-specific proteins fall into at least three kinetic classes whose synthesis is sequentially and coordinaely regulated. Temperature-sensitive (ts) mutants of one complementation group (1-2) are defective in the transition from immediate early to early and late protein synthesis. To elucidate the function of the 1-2 gene product in the HSV type 1 replicative cycle, nine ts mutants in this group were mapped by fine-structure analysis and characterized members of the group lie within the terminally repeated sequences of the S region of the genome. Fine-structure genetic and physical mapping permitted the mutations to be ordered within these sequences. Because it has been shown that the message for VP175 and the DNA template specifying this protein extend beyond the limits of the physical map of the mutations, it follows that the mutations must lie within the structural gene for VP175. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that most members of the group overproduced the immediate early proteins VP175, -136, -110, and -63 and markedly underproduced early and late proteins at the nonpermissive temperature. In temperature shiftup experiments, it was fund that the synthesis of early and late proteins ceased, whereas the synthesis of immediate early proteins began again. Thus, it is postulated that VP175 is (i) involved in the transition from immediate early to early protein synthesis, (ii) requird continuously to maintain early protein synthesis, (iii) autoregulated, acting to inhibit immediate early protein synthesis.
- Research Article
67
- 10.1016/j.cub.2007.10.053
- Nov 20, 2007
- Current biology : CB
The Role of Rapid, Local, Postsynaptic Protein Synthesis in Learning-Related Synaptic Facilitation in Aplysia
- Research Article
370
- 10.1016/s0896-6273(03)00635-4
- Oct 1, 2003
- Neuron
Compartmentalized Synthesis and Degradation of Proteins in Neurons
- Research Article
32
- 10.1016/0014-4886(75)90207-1
- Oct 1, 1975
- Experimental Neurology
Influence of nerve cell body and neurolemma cell on local axonal protein synthesis following neurotomy
- Research Article
24
- 10.1523/jneurosci.4282-15.2016
- Jul 6, 2016
- Journal of Neuroscience
Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning-induced behavioral plasticity in vivo.
- Research Article
12
- 10.1073/pnas.2114747120
- Jan 30, 2023
- Proceedings of the National Academy of Sciences
Biomolecular condensates, membraneless organelles found throughout the cell, play critical roles in many aspects of cellular function. Ribonucleoprotein granules (RNPs) are a type of biomolecular condensate necessary for local protein synthesis and are involved in synaptic plasticity and long-term memory. Most of the proteins in RNPs possess low-complexity motifs (LCM), allowing for increased promiscuity of protein-protein interactions. Here, we describe the importance of protein-protein interactions mediated by the LCM of RNA-binding protein cytoplasmic polyadenylation element binding protein 3 (CPEB3). CPEB3 is necessary for long-term synaptic plasticity and memory persistence, but the mechanisms involved are still not completely elucidated. We now present key mechanisms involved in its regulation of synaptic plasticity. We find that CPEB3-LCM plays a role in appropriate local protein synthesis of messenger ribonucleic acid (mRNA) targets, through crucial protein-protein interactions that drive localization to neuronal Decapping protein 1 (DCP1)-bodies. Translation-promoting CPEB3 and translation-inhibiting CPEB1 are packaged into neuronal RNP granules immediately after chemical long-term potentiation is induced, but only translation-promoting CPEB3 is repackaged to these organelles at later time points. This localization to neuronal RNP granules is critical for functional influence on translation as well as overall local protein synthesis (measured as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) insertion into the membrane and localization to the synapse). We therefore conclude that protein-protein interaction between the LCM of CPEB3 plays a critical role in local protein synthesis by utilizing neuronal RNP granules.
- Discussion
5
- 10.1016/j.cell.2018.02.041
- Mar 1, 2018
- Cell
For Want of a Template
- Research Article
16
- 10.1021/acs.jproteome.0c00980
- Apr 1, 2021
- Journal of Proteome Research
Axons are complex subcellular compartments that are extremely long in relation to cell bodies, especially in peripheral nerves. Many processes are required and regulated during axon injury, including anterograde and retrograde transport, glia-to-axon macromolecular transfer, and local axonal protein synthesis. Many in vitro omics approaches have been used to gain insight into these processes, but few have been applied in vivo. Here we adapted the osmotic ex vivo axoplasm isolation method and analyzed the adult rat sciatic-nerve-extruded axoplasm by label-free quantitative proteomics before and after injury. 2087 proteins groups were detected in the axoplasm, revealing translation machinery and microtubule-associated proteins as the most overrepresented biological processes. Ribosomal proteins (73) were detected in the uninjured axoplasm and increased their levels after injury but not within whole sciatic nerves. Meta-analysis showed that detected ribosomal proteins were present in in vitro axonal proteomes. Because local protein synthesis is important for protein localization, we were interested in detecting the most abundant newly synthesized axonal proteins in vivo. With an MS/MS-BONCAT approach, we detected 42 newly synthesized protein groups. Overall, our work indicates that proteomics profiling is useful for local axonal interrogation and suggests that ribosomal proteins may play an important role, especially during injury.
- New
- Research Article
- 10.1016/j.mib.2025.102681
- Nov 7, 2025
- Current opinion in microbiology
- Front Matter
- 10.1016/j.mib.2025.102680
- Nov 1, 2025
- Current opinion in microbiology
- Research Article
- 10.1016/j.mib.2025.102677
- Oct 13, 2025
- Current opinion in microbiology
- Research Article
- 10.1016/j.mib.2025.102676
- Sep 27, 2025
- Current opinion in microbiology
- Research Article
- 10.1016/j.mib.2025.102665
- Sep 18, 2025
- Current opinion in microbiology
- Research Article
- 10.1016/j.mib.2025.102660
- Sep 10, 2025
- Current opinion in microbiology
- Research Article
- 10.1016/j.mib.2025.102666
- Sep 10, 2025
- Current opinion in microbiology
- Research Article
- 10.1016/j.mib.2025.102663
- Sep 8, 2025
- Current opinion in microbiology
- Research Article
- 10.1016/j.mib.2025.102638
- Sep 1, 2025
- Current opinion in microbiology
- Research Article
- 10.1016/j.mib.2025.102652
- Sep 1, 2025
- Current opinion in microbiology
- Ask R Discovery
- Chat PDF
AI summaries and top papers from 250M+ research sources.