Abstract

This paper presents a method developed in CATIA design environment, for profiling tools bounded by revolution peripheral surfaces — side mill tool. The graphical method is based on a complementary theorem of surface enveloping. They are presented specific algorithms and an example for profiling generating tools of helical flutes of compressors rotors with three lobes. The obtained results with graphical method are compared with those obtained by a classical method — the Nikolaev theorem. The graphical method is very intuitive and, at the same time, very rigorous. It is characterized by the simplicity of application and avoids the ambiguity case of solutions, which are frequently met in numerical methods, as profiles overlapping, generating of revolving surfaces or rotating a spatial curve around the tool’s axis. Other advantage of using graphical methods is that CNC machines tools, used for generating profiled tools, allows importing the files, which directly result from graphical modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.