Abstract

In the present study, multi-objective optimization of centrifugal pumps is performed in three steps. In the first step, efficiency (η) and the required net positive suction head (NPSHr) in a set of centrifugal pumps are numerically investigated using commercial software. Two meta-models based on the evolved group method of data handling (GMDH) type neural networks are obtained in the second step for modeling of η and NPSHr with respect to geometrical design variables. Finally, using the obtained polynomial neural networks, a multi-objective particle swarm optimization method (MOPSO) is used for Pareto-based optimization of centrifugal pumps considering two conflicting objectives, η and NPSHr. The Pareto results of the MOPSO method are also compared with those of a multi-objective genetic algorithm (NSGA II). It is shown that some interesting and important relationships as useful optimal design principles involved in the performance of centrifugal pumps can be discovered by Pareto-based multi-objective optimization of the obtained polynomial metamodels representing η and NPSHr characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.