Abstract

BackgroundHistologic samples all funnel through the H&E microtomy staining area. Here manual processes intersect with semi-automated processes creating a bottleneck. We compare alternate work processes in anatomic pathology primarily in the H&E staining work cell.MethodsWe established a baseline measure of H&E process impact on personnel, information management and sample flow from historical workload and production data and direct observation. We compared this to performance after implementing initial Lean process modifications, including workstation reorganization, equipment relocation and workflow levelling, and the Ventana Symphony stainer to assess the impact on productivity in the H&E staining work cell.ResultsAverage time from gross station to assembled case decreased by 2.9 hours (12%). Total process turnaround time (TAT) exclusive of processor schedule changes decreased 48 minutes/case (4%). Mean quarterly productivity increased 8.5% with the new methods. Process redesign reduced the number of manual steps from 219 to 182, a 17% reduction. Specimen travel distance was reduced from 773 ft/case to 395 ft/case (49%) overall, and from 92 to 53 ft/case in the H&E cell (42% improvement).ConclusionsImplementation of Lean methods in the H&E work cell of histology can result in improved productivity, improved through-put and case availability parameters including TAT.

Highlights

  • Histologic samples all funnel through the hematoxylin and eosin (H&E) microtomy staining area

  • Economic pressures to increase productivity in order to maintain profitability, the need to hasten the time to diagnosis while preserving ample time for study and evaluation by pathologists and trainees, and the desire to reduce sources of medical error have entailed upon the histology laboratory the classic “rock and hard place” logjam that cannot be solved by reliance upon the status quo methods of the past

  • Measurement of the capability of each process step demonstrated an inability of the status quo methods to meet this demand in the areas of gross dissection, microtomy and H&E staining. (Figure 2) As is evident from the graph, the biggest bottleneck was in the H&E staining step

Read more

Summary

Introduction

Histologic samples all funnel through the H&E microtomy staining area. Here manual processes intersect with semi-automated processes creating a bottleneck. The core process of every anatomic pathology laboratory has been the hematoxylin and eosin (H&E) stain for well over 100 years. A combination of economic pressures to increase productivity in order to maintain profitability, the need to hasten the time to diagnosis while preserving ample time for study and evaluation by pathologists and trainees, and the desire to reduce sources of medical error have entailed upon the histology laboratory the classic “rock and hard place” logjam that cannot be solved by reliance upon the status quo methods of the past. Industrial productivity and quality systems methods such as Lean and Six Sigma have been introduced into healthcare and laboratory operations over the past several years to successfully confront this dilemma [1,2,3,4]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.