Abstract

IntroductionThermal burns release reactive oxygen species, which cause profound systemic and local changes. Stromal vascular fraction cells (SVFs) combined with platelet-rich plasma accelerate burn wound healing. This study investigated the effect of a combination of locally injected SVFs and PRP on malondialdehyde (MDA) and nitric oxide (NO) serum and tissue levels in a deep dermal burn model in Wistar rats.MethodsThirty-six adult Wistar rats weighing between 150 and 250 grams were used in this study to establish a deep dermal degree burn wound model. They were randomly divided into 4 groups: locally injected the combination SVFs and PRP, the Vaseline group, the placebo group, and healthy Wistar rats (the normal control group). MDA and NO levels in blood serum and burn wound tissue were measured at 8, 24, and 48 hours. Data were analyzed with one-way ANOVA followed by multiple comparisons tests and regression tests.ResultsLocal injection of SVFs and PRP in combination affected blood MDA, tissue MDA, blood NO and tissue NO levels, with reductions of 0.257µmol/L, 0.427 µmol/L, 21.78nmol/mg, and 23.777nmol/mg, respectively. Injection of SVFs and PRP in combination reduced tissue MDA levels by 1.282 times, NO blood levels by 2.305, and NO tissue levels by 2.377 times compared to Vaseline application.ConclusionThe combination of SVFs and PRP undeniably reduced the MDA and NO levels in blood and tissue compared to those in the Vaseline and placebo groups. The injection of these two preparations in combination inhibited the local and systemic stress oxidative response, as illustrated by the decreased MDA and NO levels in blood serum and tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.