Abstract
Despite significant advances in the treatment of triple-negative breast cancer, this disease continues to pose a clinical challenge, with many patients ultimately suffering from relapse. Tumor cells that recover after entering into a state of senescence after chemotherapy or radiation have been shown to develop a more aggressive phenotype, and to contribute to disease recurrence. By combining the PARP inhibitor (PARPi), talazoparib, with radiation, senescence was enhanced in 4T1 and MDA-MB-231 triple-negative breast cancer cell lines (based on SA-β-gal upregulation, increased expression of CDKN1A and the senescence-associated secretory phenotype (SASP) marker, IL6). Subsequent treatment of the radiation- and talazoparib-induced senescent 4T1 and MDA-MB231 cells with navitoclax (ABT-263) resulted in significant apoptotic cell death. In immunocompetent tumor-bearing mice, navitoclax exerted a modest growth inhibitory effect when used alone, but dramatically interfered with the recovery of 4T1-derived tumors induced into senescence with ionizing radiation and talazoparib. These findings support the potential utility of a senolytic strategy in combination with the radiotherapy/PARPi combination to mitigate the risk of disease recurrence in triple-negative breast cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.