Abstract

AbstractFrom density functional theory calculations, we elucidated the reaction mechanism of CO2 reduction on silicene nanoflakes. According to the results, silicene monoflakes present a notable catalytic activity for the hydrogenation of CO2. The most probable energetically favorable reaction pathway is formic acid and formaldehyde production, with energy barriers ranging between 16 and 24.1 kcal/mol. At the same time, transforming carbon dioxide to methanol, carbon monoxide, and methane requires higher activation energies. This theoretical perspective provides significant insights into silicene‐based materials and their potential applications as CO2 conversion to fuel and value‐added chemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.