Abstract
We consider a linear system with discontinuous coefficients controlled by a parameter under an integral constraint imposed on the control resource. It is well known that in such problems the closure of the sheaf of trajectories that correspond to ordinary controls (piecewise constant or measurable functions) coincides with the sheaf of trajectories in a generalized problem, where for generalized controls one uses finite additive measures of bounded variation. Therewith the closure is defined in the topology of pointwise convergence, because the limit elements (the generalized trajectories) may be discontinuous functions. In this paper we prove that any generalized trajectory can be approximated by a sequence of ordinary solutions to the initial system. We propose a concrete technique for constructing such sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.