Abstract
Background: Asthma is a complex and heterogeneous chronic inflammatory disorder which is characterized by airway remodeling and airway inflammation, including goblet cell and airway smooth muscle cell hyperplasia, mucus hypersecretion and eosinophils infiltration. Epidermal growth factor receptor (EGFR) plays an important role in goblet cell hyperplasia and mucus hypersecretion. We aimed to investigate the effects of gefitinib, an EGFR inhibitor, on ovalbumin (OVA)-induced airway remodeling and inflammation of a mouse model of asthma. Methods: Pathological changes of OVA sensitization of BALB/c mice were measured by H&E and PAS staining; pEGFR, Bcl-2 and Bax expression was measured by western blot; ELISA was used to measure the level of muc5ac, IL-13 and IFN-γ; TUNEL staining was used to detect goblet cell apoptosis. Results: At the present study, H&E and PAS staining showed that mice pretreated with gefinitib developed fewer pathological changes compared with asthmatic mice and gefinitib treatment asthmatic mice, such as a remarkable reduction in airway inflammation, goblet cell and airway smooth muscle cell hyperplasia. Chronic gefitinib treatment or short-term gefitinib treatment significant down-regulate the expression of pEGFR compared with asthma group. Also, chronic gefitinib treatment markedly decreased the levels of muc5ac and IL-13 in BALF, whereas the level of IFN-γ did not change obviously. TUNEL staining showed that the goblet cell apoptosis rate was much higher in the short-term gefinitib treatment group compared with the asthma and chronic gefitinib treatment group which was accompanied by a decrease in Bcl-2 levels and an increase in Bax expression in goblet cells. Conclusion: In summary, our results suggested that gefinitib may have a potential role in airway remodeling and inflammation, and may be an effective pharmacotherapy for asthma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.