Abstract

Richard P. Stanley defined the chromatic symmetric function of a simple graph and has conjectured that every tree is determined by its chromatic symmetric function. Recently, Takahiro Hasebe and the author proved that the order quasisymmetric functions, which are analogs of the chromatic symmetric functions, distinguish rooted trees. In this paper, using a similar method, we prove that the chromatic symmetric functions distinguish trivially perfect graphs. Moreover, we also prove that claw-free cographs, that is, $ \{K_{1,3},P_{4}\} $-free graphs belong to a known class of $ e $-positive graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.