Abstract

ClpP is a proteolytic subunit of the ATP-dependent Clp protease, which is found in chloroplasts in higher plants. Proteolytic subunits are encoded both by the chloroplast gene, clpP, and a nuclear multi gene family. We insertionally disrupted clpP by chloroplast transformation in tobacco. However, complete segregation was impossible, indicating that the chloroplast-encoded clpP gene has an indispensable function for cell survival. In the heteroplasmic clpP disruptant, the leaf surface was rough by clumping, and the lateral leaf expansion was irregularly arrested, which led to an asymmetric, slender leaf shape. Chloroplasts consisted of two populations: chloroplasts that were similar to the wild type, and small chloroplasts that emitted high chl fluorescence. Ultrastructural analysis of chloroplast development suggested that clpP disruption also induced swelling of the thylakoid lumen in the meristem plastids and inhibition of etioplast development in the dark. In mature leaves, thylakoid membranes of the smaller chloroplast population consisted exclusively of large stacks of tightly appressed membranes. These results indicate that chloroplast-encoded ClpP is involved in multiple processes of chloroplast development, including a housekeeping function that is indispensable for cell survival.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.