Abstract

BackgroundThe bacterium Borrelia burgdorferi, the causative agent of Lyme disease, is a limited-genome organism that must obtain many of its biochemical building blocks, including N-acetylglucosamine (GlcNAc), from its tick or vertebrate host. GlcNAc can be imported into the cell as a monomer or dimer (chitobiose), and the annotation for several B. burgdorferi genes suggests that this organism may be able to degrade and utilize chitin, a polymer of GlcNAc. We investigated the ability of B. burgdorferi to utilize chitin in the absence of free GlcNAc, and we attempted to identify genes involved in the process. We also examined the role of RpoS, one of two alternative sigma factors present in B. burgdorferi, in the regulation of chitin utilization.ResultsUsing fluorescent chitinase substrates, we demonstrated an inherent chitinase activity in rabbit serum, a component of the B. burgdorferi growth medium (BSK-II). After inactivating this activity by boiling, we showed that wild-type cells can utilize chitotriose, chitohexose or coarse chitin flakes in the presence of boiled serum and in the absence of free GlcNAc. Further, we replaced the serum component of BSK-II with a lipid extract and still observed growth on chitin substrates without free GlcNAc. In an attempt to knockout B. burgdorferi chitinase activity, we generated mutations in two genes (bb0002 and bb0620) predicted to encode enzymes that could potentially cleave the β-(1,4)-glycosidic linkages found in chitin. While these mutations had no effect on the ability to utilize chitin, a mutation in the gene encoding the chitobiose transporter (bbb04, chbC) did block utilization of chitin substrates by B. burgdorferi. Finally, we provide evidence that chitin utilization in an rpoS mutant is delayed compared to wild-type cells, indicating that RpoS may be involved in the regulation of chitin degradation by this organism.ConclusionsThe data collected in this study demonstrate that B. burgdorferi can utilize chitin as a source of GlcNAc in the absence of free GlcNAc, and suggest that chitin is cleaved into dimers before being imported across the cytoplasmic membrane via the chitobiose transporter. In addition, our data suggest that the enzyme(s) involved in chitin degradation are at least partially regulated by the alternative sigma factor RpoS.

Highlights

  • The bacterium Borrelia burgdorferi, the causative agent of Lyme disease, is a limited-genome organism that must obtain many of its biochemical building blocks, including N-acetylglucosamine (GlcNAc), from its tick or vertebrate host

  • In order to investigate chitin utilization by B. burgdorferi, we first determined if there was an inherent chitinase activity in the growth medium (BSK-II) that would interfere with subsequent growth analyses of B. burgdorferi in the presence of chitin

  • We incubated rabbit serum or Barbour-Stoenner-Kelly medium (BSK-II) supplemented with 7% rabbit serum with three artificial fluorescent substrates used to detect chitinase activity: 4methylumbelliferyl N-acetyl-β-D-glucosaminide (4-MUF 4-methylumbelliferyl N-acetyl-β-D-glucosaminide (GlcNAc)), 4-methylumbelliferyl β-D-N,N'-diacetylchitobioside (4-MUF 4methylumbelliferyl β-D-N (GlcNAc2)) and 4-methylumbelliferyl β-DN,N',N"-triacetylchitotrioside (4-MUF GlcNAc3)

Read more

Summary

Introduction

The bacterium Borrelia burgdorferi, the causative agent of Lyme disease, is a limited-genome organism that must obtain many of its biochemical building blocks, including N-acetylglucosamine (GlcNAc), from its tick or vertebrate host. The disease is contracted from a tick (Ixodes species) infected with the spirochete Borrelia burgdorferi. Ixodes ticks typically feed on small vertebrates such as the white-footed mouse, but humans are sometimes an accidental host. If an infected-feeding tick is not removed before transmission occurs, B. burgdorferi disseminates from the site of inoculation and approximately. 70% of the time causes a characteristic bulls-eye rash around the site of the tick bite known as erythema migrans. While antibiotic treatment and tick avoidance are effective in Lyme disease management and prevention, efforts to understand the molecular mechanisms underlying the pathogen's life cycle and host colonization strategies remain important for the development of new prophylactic measures

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.