Abstract

AbstractPorous polymers have been evolving continuously since the introduction of foam rubber in 1929. Today, pore diameters ranging from sub‐nanometre to millimetre can be generated controllably. Cutting‐edge porous polymers are now being applied at the forefront of critical problems with societal and environmental impact including advanced systems for biomedicine, water purification, energy storage, and gas purification and storage. The commonly‐used pore generation approaches include macromolecular design, self‐assembly, phase separation, solid and liquid templating, sol‐gel formation, and foaming. In each, The Chemistry of Polymers, both the polymerization chemistry and the macromolecular structural chemistry, must be applied advantageously to generate the empty volume within the polymer and then fix it in place. This essay will traverse the various pore size scales, describing the chemistries involved and discussing their implications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.