Abstract

We study the formation of molecules and dust clusters in the ejecta of solar metallicity, Type II-P supernovae (SNe) using a chemical kinetic approach. We follow the evolution of molecules and small dust cluster masses from day 100 to day 1500 after explosion. We consider stellar progenitors with initial masses of 12, 15, 19, and 25 M☉ that explode as SNe with stratified ejecta. The molecular precursors to dust grains comprise molecular chains, rings and small clusters of silica, silicates, metal oxides, sulfides and carbides, pure metals, and carbon, where the nucleation of silicate clusters is described by a two-step process of metal and oxygen addition. We study the impact of the 56Ni mass on the type and amount of synthesized dust. We predict that large masses of molecules including CO, SiO, SiS, O2, and SO form in the ejecta. We show that the discrepancy between the small dust masses detected at infrared wavelengths some 500 days post-explosion and the larger amounts of dust recently detected with Herschel in SN remnants can be explained by the non-equilibrium chemistry linked to the formation of molecules and dust clusters in the ejected material. Dust gradually builds up from small (∼10−5 M☉) to large masses (∼5 × 10−2 M☉) over a 5 yr period after explosion. Subsequent dust formation and/or growth is hampered by the shortage of chemical agents participating in the dust nucleation and the long timescale for accretion. The results highlight the dependence of the dust chemical composition and mass on the amount of 56Ni synthesized during the explosion. This dependence may partly explain the diversity of epochs at which dust forms in SNe. More generally, our results indicate that Type II-P SNe are efficient but moderate dust producers with an upper limit on the mass of synthesized dust ranging from ∼0.03 to 0.09 M☉. Other dust sources must then operate at high redshift to explain the large quantities of dust present in young galaxies in the early universe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.