Abstract

The preceding paper (Dalton Trans., 2008, DOI: 10.1039/b806100a) describes the logical development of a chemical mechanism for the catalysis of hydrogenation of N(2) to 2NH(3) that occurs at the Fe(7)MoS(9)N(c)(homocitrate) cofactor (FeMo-co) of the enzyme nitrogenase. The mechanism uses a single replenishable path for serial supply of protons which become H atoms on FeMo-co, migrating to become S-H and Fe-H donors to N(2) and to the intermediates that follow. This chemical catalysis at FeMo-co is distinctly intramolecular: transition states and reaction profiles for the preferred 21 step pathway were presented. This paper describes a number of alternative intermediates and pathways that were considered in developing the mechanism. These results reveal further relevant principles of the reactivity of hydrogenated FeMo-co, and the reasons why these pathways are less likely to be part of the mechanism. The intramolecular character of the mechanism, and the relatively small distances over which H atoms transfer, lead to expectations of extensive quantum mechanical hydrogen tunneling as part of the catalytic rate enhancement. This possibility is supported by comparisons of reaction profiles with those for enzyme reactions for which tunneling is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.