Abstract
The charge percolation mechanism (CPM) of olefin polymerization in the presence of transition metal compounds has been applied to explain the polymerization of ethylene by silica supported chromium oxide. In the previous work of this series, the fundamental issues and mechanism of this polymeri?zation were presented. In this work the compatibility of the CPM with the em?pirical findings is confirmed. The CPM has been applied to explain: the appea?rance of an induction period; the deactivation of active centers and the forma?tion of oligomers; the effects of chromium concentration on the silica surface, the silica surface discontinuity and the pore size of silica on polymerization and the formation of the structure of polyethylene. A mathematical model has been derived to explain the effects of the CrOx/SiO2 ratio on the productivity of Phil?lips catalysts in the polymerization of ethylene. The empirical findings have also been confirmed by computer simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.