Abstract

This study reports the successful preparation of Cu (In, Ga)Se2 (CIGS) thin film solar cells by ion beam sputtering with a chalcopyrite CIGS quaternary target. The films were fabricated with different beam currents. The thin films were characterized with X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) and hall effect-measurement system to study the microstructures, composition, surface morphology and electrical properties, respectively. Experimental results show that both the films are chalcopyrite structure, the Ga/(In+Ga) ratio, Cu/(In+Ga) ratio and Se/(Cu+In+Ga) ratio are decrease with the beam currents increase, the surfaces morphology of the films are dense, and the resistivity of the film deposited with the beam current of 40mA is 0.56Ωcm, with a carrier concentration of 4.11Χ1018cm-3 and mobility of 2.73cm2V-1s-1. The resulting film exhibited p-type conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.