Abstract

Extending previous work (Sung & Jordan, 1987 a, Biophys. J. 51, 661-672; 1988, Biophys. J.54, 519-526), we describe channel properties of five possible gramicidin dimers by studying dimerization energies and axial electrical potentials. Unlike the head-to-head dimer (the predominant channel former), both tail-to-tail and head-to-tail dimers with the same beta-helical monomer structure as the head-to-head dimer only form four intermonomer hydrogen bonds and are much less stable. Were channels formed from these dimers to be observed, their electrical potential profiles suggest that they should be cation selective, probably conduct less than the head-to-head dimer, have a central cation binding site, bind cations preferentially if crystallizable, and in the case of the head-to-tail dimer, rectify. Like the antiparallel double stranded helical dimer (a possible minor conducting pathway) the parallel double stranded helical dimer has 28 interstrand hydrogen bonds, but its hydrogen bond network is quite distorted and it is much less stable. If it formed, its electrical potential profile suggests that it would be cation selective, bind anions preferentially if crystallizable, rectify, and at high enough voltages, might exhibit a conductance greater than that of the antiparallel form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.