Abstract

Abstract Using Chandra observations in the 2.15 deg2 COSMOS-legacy field, we present one of the most accurate measurements of the Cosmic X-ray Background (CXB) spectrum to date in the [0.3–7] keV energy band. The CXB has three distinct components: contributions from two Galactic collisional thermal plasmas at kT ∼ 0.27 and 0.07 keV and an extragalactic power law with a photon spectral index Γ = 1.45 ± 0.02. The 1 keV normalization of the extragalactic component is 10.91 ± 0.16 keV cm−2 s−1 sr−1 keV−1. Removing all X-ray-detected sources, the remaining unresolved CXB is best fit by a power law with normalization 4.18 ± 0.26 keV cm−2 s−1 sr−1 keV−1 and photon spectral index Γ = 1.57 ± 0.10. Removing faint galaxies down to leaves a hard spectrum with and a 1 keV normalization of ∼1.37 keV cm−2 s−1 sr−1 keV−1. This means that ∼91% of the observed CXB is resolved into detected X-ray sources and undetected galaxies. Unresolved sources that contribute ∼8%–9% of the total CXB show marginal evidence of being harder and possibly more obscured than resolved sources. Another ∼1% of the CXB can be attributed to still undetected star-forming galaxies and absorbed active galactic nuclei. According to these limits, we investigate a scenario where early black holes totally account for non-source CXB fraction and constrain some of their properties. In order to not exceed the remaining CXB and the accreted mass density, such a population of black holes must grow in Compton-thick envelopes with 1.6 × 1025 cm−2 and form in extremely low-metallicity environments .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.