Abstract

The cerebellum is involved in predicting the sensory feedback resulting from movements and sensations, but little is known about the precise timing of these predictions due to the scarcity of time-sensitive cerebellar neuroimaging studies. We here, using magnetoencephalography, investigated the hypothesis that one function of the cerebellum is to predict with millisecond precision when rhythmic stimuli are expected to impinge on sensory receptors.This revealed that omissions following regular trains of stimulation showed higher cerebellar power in the beta band (14-30 Hz) than those following irregular trains of stimulation, within milliseconds of when the omitted stimulus should have appeared. We also found evidence of cerebellar theta band (4-7 Hz) activity encoding the rhythm of new sequences of stimulation.Our results also strongly suggest that the putamen and the thalamus mirror the cerebellum in showing higher beta band power when omissions followed regular trains of stimulation compared to when they followed irregular trains of stimulation.We interpret this as the cerebellum functioning as a clock that precisely encodes and predicts upcoming stimulation, perhaps in tandem with the putamen and thalamus. Relative to less predictable stimuli, perfectly predictable stimuli induce greater cerebellar power. This implies that the cerebellum entrains to rhythmic stimuli for the purpose of detecting any deviations from that rhythm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.