Abstract

The phloem-unloading pathway of sucrose and mechanism of sugar-to-oil transition are still unknown in Camellia oleifera Fruit. Here, transmission electronic microscopy (TEM) and confocal laser-scanning microscopy (CLSM) were used to observe the cellular structure of vascular bundles and symplastic tracer, carboxyfluorescein (CF), transport in phloem zone. The results showed that sucrose was transported via symplast system in the early and late phases, whereas apoplast system exerted the function in middle stage. Moreover, enzymatic assays showed that acid invertase had a higher activity at the transition stage during the whole fruit development. The cell wall bound invertase (CWI) activity reached the highest at the middle stage of fruit development and the switch in phloem-unloading coincided with fruit developmental phase change and oil accumulation. Correlation analysis showed that the oil accumulation was significantly negatively correlated with content of soluble sugar at P < 0.05 level. However, the soluble acid invertase (SAI), CWI, and neutral invertase showed a significant positive correlation with oil accumulation at P < 0.01 level. In summary, our data provide new cytological insights into the transition of unloading transfer between symplasmic and apoplasmic patterns in C. oleifera fruit and suggest that invertases are positively involved in sugar–oil transition process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.