Abstract
The dramatic alterations in the appearance of the integument with increasing age are due in part to a progressive destruction of the delicate architecture of the connective tissue components of the dermis. Both collagenous and elastic components display a degeneration consistent with the overexpression of proteolytic activity. Recent advances in the field of molecular gerontology, using in vitro models of cellular aging, are yielding clues as to the fundamental causes of dermal aging. Dermal fibroblasts possess a finite replicative capacity of 50 to 100 doublings, then cease replicating in response to growth factors. Cells cultivated to the end of their replicative lifespan in vitro display alterations consistent with their playing a role in aging in vivo. In particular, senescent dermal fibroblasts overexpress metalloproteinase activities that may explain the age-related atrophy of extracellular matrix architecture. The recent discovery of a structural change in the telomeric region of the genome with cellular aging and new insights into DNA damage checkpoint mechanisms offer new opportunities to uncover both the molecular mechanisms regulating cellular aging and possibly to devise new strategies to manipulate these molecular events for therapeutic effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.