Abstract

We have previously shown that nitric oxide synthase (NOS) activity is upregulated following tendon injury, and that this activity is important to Achilles tendon healing. The aim of this study was to identify the cellular distribution of nitric oxide synthase isoforms during tendon healing. Surgical division of the right Achilles tendon was performed in eighty-five male Sprague-Dawley rats. Healing Achilles tendons were harvested at 4, 7, 14 and 21 days following the surgery. The un-injured left Achilles tendons were used as controls. Using RNase protection assays, in situ hybridization and immunohistochemistry, mRNA and protein of NOS isoforms were evaluated. Minimal NOS expression was found in un-injured tendon. A cell specific temporal pattern for the mRNA and protein for all three NOS isoforms was found following injury to the Achilles tendon. iNOS was maximal on day 4 in macrophages and fibroblasts. eNOS was maximal on day 4 in endothelial cells and fibroblasts. bNOS expression gradually increased up to day 21 and was found only in fibroblasts. These results suggest that all three nitric oxide synthase isoforms are expressed by fibroblasts in a coordinated temporal sequence during tendon healing. The sequential pattern of NOS expression in healing fibroblasts suggests that each NOS isoform may play a different role in the healing process and provides opportunities to modify tendon healing in the clinical setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.