Abstract

We study the Cauchy problem for a class of quasilinear hyperbolic systems with coefficients depending on (t, x) ∈ [0, T ] × ℝn and presenting a linear growth for |x | ∞. We prove well-posedness in the Schwartz space (ℝn). The result is obtained by deriving an energy estimate for the solution of the linearized problem in some weighted Sobolev spaces and applying a fixed point argument. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.