Abstract

Increasing methionine in potato tubers is desirable, both to increase the availability of this limiting essential amino acid and to enhance the aroma of baked and fried potatoes. Previous attempts to elevate potato methionine content using transgenic approaches have focused on increasing methionine biosynthesis. Higher isoleucine accumulation in these transgenic tubers suggested that the potatoes compensate for increased methionine biosynthesis with enhanced catabolism via methionine gamma-lyase (MGL), thereby producing 2-ketybutyrate for isoleucine biosynthesis. In the current study, we show that potato StMGL1 encodes a functional MGL in potato tubers. In planta silencing of StMGL1 results in an increased methionine to isoleucine ratio in the free amino acid profile of potato tubers and, in some transgenic lines, elevated accumulation of free methionine. In both wild-type and transgenic tubers, the ratio of methionine to isoleucine is negatively correlated with the level of StMGL1 transcript. A three-dimensional distribution of free amino acids in potato tubers is also described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.