Abstract
AbstractRadar and satellite observations document the evolution of a destructive fire‐generated vortex during the Carr fire on 26 July 2018 near Redding, California. The National Weather Service estimated that surface wind speeds in the vortex were in excess of 64 m/s, equivalent to an EF‐3 tornado. Radar data show that the vortex formed within an antecedent region of cyclonic wind shear along the fire perimeter and immediately following rapid vertical development of the convective plume, which grew from 6 to 12 km aloft in just 15 min. The rapid plume development was linked to the release of moist instability in a pyrocumulonimbus (pyroCb). As the cloud grew, the vortex intensified and ascended, eventually reaching an altitude of 5,200 m. The role of the pyroCb in concentrating near‐surface vorticity distinguishes this event from other fire‐generated vortices and suggests dynamical similarities to nonmesocyclonic tornadoes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.