Abstract

Post-myocardial infarction (MI) heart failure is a major public health problem in Western countries and results from ischemia/reperfusion (IR)-induced cell death, remodeling, and contractile dysfunction. Ex vivo studies have demonstrated the cardioprotective anti-inflammatory effect of the cannabinoid type 2 (CB2) receptor agonists within hours after IR. Herein, we evaluated the in vivo effect of CB2 receptors on IR-induced cell death, fibrosis, and cardiac dysfunction and investigated the target role of cardiac myocytes and fibroblasts. The infarct size was increased 24 h after IR in CB2(-/-) vs. wild-type (WT) hearts and decreased when WT hearts were injected with the CB2 agonist JWH133 (3 mg/kg) at reperfusion. Compared with WT hearts, CB2(-/-) hearts showed widespread injury 3 d after IR, with enhanced apoptosis and remodeling affecting the remote myocardium. Finally, CB2(-/-) hearts exhibited exacerbated fibrosis, associated with left ventricular dysfunction 4 wk after IR, whereas their WT counterparts recovered normal function. Cardiac myocytes and fibroblasts isolated from CB2(-/-) hearts displayed a higher H(2)O(2)-induced death than WT cells, whereas 1 microM JWH133 triggered survival effects. Furthermore, H(2)O(2)-induced myofibroblast activation was increased in CB2(-/-) fibroblasts but decreased in 1 microM JWH133-treated WT fibroblasts, compared with that in WT cells. Therefore, CB2 receptor activation may protect against post-IR heart failure through direct inhibition of cardiac myocyte and fibroblast death and prevention of myofibroblast activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.