Abstract

This paper studies in detail the electronic properties of the semimetallic single-walled carbon nanotubes by applying the symmetry-adapted tight-binding model. It is found that the hybridization of π—σ states caused by the curvature produces an energy gap at the vicinity of the Fermi level. Such effects are obvious for the small zigzag and chiral single-walled carbon nanotubes. The energy gaps decrease as the diameters and the chiral angles of the tubes increase, while the top of the valence band and the bottom of the conduction band of armchair tubes cross at the Fermi level. The numeral results agree well with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.