Abstract

In this letter, the bulk modulus of an individual C60 molecule is calculated in terms of the C,C bond force constant. A range of values for the bulk modulus is obtained with literature values for the force constant. The values obtained all exceed the bulk modulus (441 GPa) of diamond. With a C,C bond force constant equal to that between adjacent carbon atoms in graphite, 7.08 mdyn/Å, a bulk modulus of 903 GPa is obtained. On the basis of a simple composite model it is calculated that single closest-packed C60 crystals of C60 will have a bulk modulus of roughly 668 GPa under hydrostatic pressures. The calculated bulk modulus for a single C60 ‘‘buckyball’’ therefore suggests the possibility that a C60 crystal could be the most incompressible material known, at a pressure above about 50 GPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.