Abstract

We show how a particular spatial structure with a buffer globally stabilizes the chemostat dynamics with non-monotonic response function, while this is not possible with single, serial or parallel chemostats of the same total volume and input flow. We give a characterization of the set of such configurations that satisfy this property, as well as the configuration that ensures the best nutrient conversion. Furthermore, we characterize the minimal buffer volume to be added to a single chemostat for obtaining the global stability. These results are illustrated with the Haldane kinetic function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.