Abstract

The Brownian loop soup (BLS) is a conformally invariant statistical ensemble of random loops in two dimensions characterized by an intensity λ > 0. Recently, we constructed families of operators in the BLS and showed that they transform as conformal primary operators. In this paper we provide an explicit expression for the BLS stress-energy tensor and compute its operator product expansion with other operators. Our results are consistent with the conformal Ward identities and our previous result that the central charge is c = 2λ. In the case of domains with boundary we identify a boundary operator that has properties consistent with the boundary stress-energy tensor. We show that this operator generates local deformations of the boundary and that it is related to a boundary operator that induces a Brownian excursion starting or ending at its insertion point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.