Abstract

Bronchoalveolar lavage (BAL) is used by researchers to study molecular interactions within healthy and diseased human lungs. However, the utility of BAL fluid measurements may be limited by difficulties accounting for dilution of the epithelial lining fluid (ELF) sampled and inconsistent collection techniques. The use of endogenous markers to estimate ELF dilution has been proposed as a potential method to normalize acellular molecule measurements in BAL fluid, but these markers are also imperfect and prone to inaccuracy. The focus of this report is to review factors that affect the interpretation of acellular molecule measurements in lung ELF and present original data comparing the performance of several BAL dilution markers during health and in a human endobronchial endotoxin challenge model of acute inflammation. Our findings suggest that incomplete ELF and lavage fluid mixing, flux of markers across the alveolar barrier, and lung inflammation are all possible factors that can affect marker performance. Accounting for these factors, we show that commonly used markers including urea, total protein, albumin, and immunoglobulin M are likely unreliable BAL dilution markers. In contrast, surfactant protein D appears to be less affected by these factors and may be a more accurate and biologically plausible marker to improve the reproducibility of acellular BAL component measurements across individuals during health and inflammatory states.NEW & NOTEWORTHY In this report, mathematical prediction models and real-world measurements are used to compare the performance of molecular markers of dilution in bronchoalveolar lavage fluid samples. Effects of acute inflammation within individual subjects are highlighted. These findings inform recommendations for normalizing measurements across bronchoalveolar lavage samples and highlight the need for additional markers to improve the rigor of translational studies utilizing bronchoalveolar lavage measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.