Abstract

The brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO), has been shown to decrease fecundity in Japanese medaka (Oryzias latipes) and there is indirect evidence from analysis of the transcriptome and proteome that this effect might be due to impaired oogenesis. An assay for disruption of oocyte maturation by chemical stressors has not been developed in Japanese medaka. Thus, using zebrafish (Danio rerio) as a model, objectives of the present study were to determine whether exposure to TBCO has effects on maturation of oocytes and to investigate potential mechanisms. Sexually mature female zebrafish were given a diet of 35.3 or 628.8 μg TBCO / g food for 14 days after which, stage IV oocytes were isolated to assess maturation in response to maturation inducing hormone. To explore potential molecular mechanisms, abundances of mRNAs of a suite of genes that regulate oocyte maturation were quantified by use of quantitative real-time PCR, and abundances of microRNAs were determined by use of miRNAseq. Ex vivo maturation of oocytes from fish exposed to TBCO was significantly less than maturation of oocytes from control fish. The percentage of oocytes which matured from control fish and those exposed to low and high TBCO were 89, 71, and 67%, respectively. Among the suite of genes known to regulate oocyte maturation, mRNA abundance of insulin like growth factor-3 was decreased by 1.64- and 3.44-fold in stage IV oocytes from females given the low and high concentrations of TBCO, respectively, compared to the control group. Abundances of microRNAs regulating the expression of proteins that regulate oocyte maturation, including processes related to insulin-like growth factor, were significantly different in stage IV oocytes from fish exposed to TBCO. Overall, results of this study indicated that impaired oocyte maturation might be a mechanism of reduced reproductive performance in TBCO-exposed fish. Results also suggested that effects of TBCO on oocyte maturation might be due to molecular perturbations on insulin-like growth factor signaling and expression of microRNAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.