Abstract

Methane (CH4) was injected into the high density (ne ∼ 1020 m−3), low temperature (Te ∼ 1 eV) hydrogen plasma in Pilot-PSI to determine the CH A–X photon efficiency in this unexplored plasma regime. The effects of particle transport and particle reflection on the emission of directly excited CH under these plasma conditions were assessed with the 3D Monte Carlo code ERO. The simulations of the inverse photon efficiency showed a difference of ∼20% between full hydrocarbon sticking or no sticking (reflection). In addition it predicts that particle transport may lead to more than a factor of 10 increase. The measured inverse photon efficiency is however constant at 100 ± 30 for 0.1 < Te < 1.0 eV. The constancy is consistent with dissociative recombination of , and to produce excited CH instead of direct excitation. These results form a framework for in situ carbon erosion measurements in future fusion reactors such as ITER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.