Abstract

The motivation for this paper is the study of the phase transition for recurrence/ transience of a class of self‐interacting random walks on trees, which includes the once‐reinforced random walk. For this purpose, we define a quantity, which we call the branching‐ruin number of a tree, which provides (in the spirit of Furstenberg [11] and Lyons [13]) a natural way to measure trees with polynomial growth. We prove that the branching‐ruin number of a tree is equal to the critical parameter for the recurrence/transience of the once‐reinforced random walk. We define a sharp and effective (i.e., computable) criterion characterizing the recurrence/transience of a larger class of self‐interacting walks on trees, providing the complete picture for their phase transition. © 2019 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.