Abstract

AbstractIn this communication, we extend the Neumann boundary conditions by adding a component containing the tangential derivative, hence producing oblique derivative boundary conditions. A variant of Green's formula is employed to translate the tangential derivative to the fundamental solution in the boundary element method (BEM). The two‐dimensional steady‐state heat conduction with the imposed oblique boundary condition has been tested in smooth, piecewise smooth and multiply connected domains in which the Laplace equation is the governing equation, producing results at the boundary in excellent agreement with the available analytical solutions. Convergence of the normal and tangential derivatives at the boundary is also achieved. The numerical boundary data are then used to successfully calculate the values of the solution at interior points again. The outlined test cases have been repeated with various boundary element meshes, indicating that the accuracy of the numerical results increases with increasing boundary discretization. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.