Abstract
In prevailing epithelial polarity models, membrane-based polarity cues (e.g., the partitioning-defective PARs) position apicobasal cellular membrane domains. Intracellular vesicular trafficking expands these domains by sorting polarized cargo toward them. How the polarity cues themselves are polarized in epithelia and how sorting confers long-range apicobasal directionality to vesicles is still unclear. Here, a systems-based approach using two-tiered C. elegans genomics-genetics screens identifies trafficking molecules that are not implicated in apical sorting yet polarize apical membrane and PAR complex components. Live tracking of polarized membrane biogenesis indicates that the biosynthetic-secretory pathway, linked to recycling routes, is asymmetrically oriented toward the apical domain during this domain's biosynthesis, and that this directionality is regulated upstream of PARs and independent of polarized target membrane domains. This alternative mode of membrane polarization could offer solutions to open questions in current models of epithelial polarity and polarized trafficking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.