Abstract
Utilizing a quantitative clear zone technique, the activity of an extracellular depolymerase system fromPseudomonas maculicola was investigated. Polymer degradation was influenced by the amount and availability of secondary carbon sources, with a simultaneous utilization of both sources. The initial carbon source in the liquid preculture also affected the eventual colony growth and polymer degradation. The enzyme solution was determined to readily degrade poly-3-hydroxyalkanoates (PHAs) with relatively ‘long’ alkyl substituents at the 3 position: poly-3-hydroxyoctanoate (PHO), poly-3-hydroxynonanoate (PHN), and their copolymers (P[HO-co-HN]) and poly-3-hydroxyundecanoate (PHU). However, the system was unable to degrade either PHAs with shorter alkyl groups, including poly-3-hydroxybutyrate (PHB) and the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P[HB-co-HV]) or PHAs with unusual substituents such as poly(3-hydroxy-5-phenylvaleric acid) (PHPV). It is proposed that degradation of these more bulky side chain polymers was prevented by the inability of the bacteria to assimilate their monomeric components, which inhibited the successful utilization of secondary carbon sources and thus inhibited colony growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.