Abstract
The aim of this study is to propose an information extraction system, called BigGrams, which is able to retrieve relevant and structural information (relevant phrases, keywords) from semi-structural web pages, i.e. HTML documents. For this purpose, a novel semi-supervised wrappers induction algorithm has been developed and embedded in the BigGrams system. The wrappers induction algorithm utilizes a formal concept analysis to induce information extraction patterns. Also, in this article, the author (1) presents the impact of the configuration of the information extraction system components on information extraction results and (2) tests the boosting mode of this system. Based on empirical research, the author established that the proposed taxonomy of seeds and the HTML tags level analysis, with appropriate pre-processing, improve information extraction results. Also, the boosting mode works well when certain requirements are met, i.e. when well-diversified input data are ensured.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.