Abstract
The disagreement between the weak dependence of the energy confinement time on normalized pressure, β, observed in dedicated scans and the strongly negative dependence in the confinement scaling laws used for the design of next step tokamaks and future reactors, remains an outstanding problem. As such, scans of β have been undertaken in single null, low triangularity (δ ≈ 0.2) ELMy H-mode plasmas in JET with the MarkIIGB-SRP divertor. The scans varied β by a factor of 2.8 (normalized β from 0.72 to 2.04) and covered a range of magnetic fields (1.5–2.3 T), plasma currents (1.5–2.75 MA) and safety factors (q95 = 2.8 and 3.3). A weak β dependence was observed both globally (B0τE varied less than 9% across any one scan) and locally. A scan within Type I ELMy H-modes suggests that this weaker dependence is not due to ELM regimes. A statistical analysis indicates that these results are consistent with log–linear regressions performed on a wide JET database of ELMy H-modes, if correlations in this database are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.