Abstract

We prove that the posterior distribution of a parameter in misspecified LAN parametric models can be approximated by a random normal distribution. We derive from this that Bayesian credible sets are not valid confidence sets if the model is misspecified. We obtain the result under conditions that are comparable to those in the well-specified situation: uniform testability against fixed alternatives and sufficient prior mass in neighbourhoods of the point of convergence. The rate of convergence is considered in detail, with special attention for the existence and construction of suitable test sequences. We also give a lemma to exclude testable model subsets which implies a misspecified version of Schwartz’ consistency theorem, establishing weak convergence of the posterior to a measure degenerate at the point at minimal Kullback-Leibler divergence with respect to the true distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.