Abstract

Mbl is a bacterial actin homolog that controls cell morphogenesis in Bacillus subtilis. A functional GFP-Mbl fusion protein was used to examine the behavior of the helical cables formed by Mbl protein in live B. subtilis cells. The cables undergo dynamic changes during cell cycle progression. They are stable but not rigid while elongating in parallel with cell growth, and they require septum formation to divide/cleave. Fluorescence recovery after photobleaching (FRAP) analysis showed that the cables are continuously remodeled during cell elongation. Turnover occurs along the length of the helical Mbl filaments, with no obvious polarity and a recovery half-time of about 8 min. These findings have important implications for the nature of bacterial cell wall architecture and synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.