Abstract
Signaling by the BCR involves activation of several members of the Ras superfamily of small GTPases, among which is Ras itself. Ras can control the activity of multiple effectors, including Raf, PI3K, and guanine nucleotide exchange factors for the small GTPase Ral. Ras, Raf, and PI3K have been implicated in a variety of processes underlying B cell development, differentiation, and function; however, the role of Ral in B lymphocytes remains to be established. In this study, we show that Ral is activated upon BCR stimulation in human tonsillar and mouse splenic B lymphocytes and in B cell lines. Using signaling molecule-deficient B cells, we demonstrate that this activation is mediated by Lyn and Syk, Btk, phospholipase C-gamma2, and inositol-1,4,5-trisphosphate receptor-mediated Ca(2+) release. In addition, although Ral can be activated by Ras-independent mechanisms, we demonstrate that BCR-controlled activation of Ral is dependent on Ras. By means of expression of the dominant-negative mutants RasN17 and RalN28, or of RalBPDeltaGAP, a Ral effector mutant which sequesters active Ral, we show that Ras and Ral mediate BCR-controlled transcription of c-fos. Furthermore, while not involved in NF-kappaB activation, Ras and Ral mediate BCR-controlled activation of JUN/ATF2 and NFAT transcription factors. Taken together, our data show that Ral is activated upon BCR stimulation and mediates BCR-controlled activation of AP-1 and NFAT transcription factors. These findings suggest that Ral plays an important role in B cell development and function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.